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ABSTRACT 
 

A spatial embedded slip model is presented in this paper for analyzing the coupling time-

relative effect of creep and prestress of prestressed concrete (PC) bridges. This model is made 

up of three components: a three-dimensional (3D) solid element that describes the behavior 

of concrete, a truss element that describes the behavior of tendon, and a non-thickness bond 

element that describes the interface of tendon and concrete. The bond element is embedded 

into the slip model through virtual nodes set on the intersection points of tendon and 

concrete. Also established in this paper is an elastic finite element equilibrium equation based 

on displacement-based finite element framework and constitutive relation of each component. 

Besides, the creep coefficient in prevailing Chinese Bridge Design Code is fitted using quasi-

linear regression method, on the basis of which a finite element equilibrium equation for 

analyzing coupling time-relative effects of creep and prestress is then derived. The proposed 

model allows tendon to go through concrete in any patterns, accounting for factors such as 

concrete aging differences. Correlation studies are conducted upon a series of prestressed 

concrete beams, using the slip model, and accuracy of it is fully verified. 
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Introduction 

 

Prestressed concrete (PC) bridges are popularly chosen in practical engineering for their 

advantages in construction and service over other bridge types. The simulation methods of 

concrete and tendon, the two main materials for bridges, are of great importance to the 

numerical study. Currently, most of the design calculation of the bridges is based on the 

beam-based finite element model, where the plane-section assumption is required and the 

prestress is treated as equivalent force acted on the member [1]. The beam-based model has a 

high efficiency in calculation while its drawbacks are obvious at the same time. For example, 

it ignores the tendon slip, neglects the impact of concrete deformation on prestressing force, 

and lacks ability both in reflecting the spatial mechanic state of the structure and calculating 

the prestress loss accurately. In order to solve these problems, various kinds of entity finite 

element models are introduced to the advanced analysis of PC bridges, in which the tendon is 

modeled as independent element, contributing to the overall stiffness and load of the structure. 

There are mainly two approaches [2] for these entity models in dealing with the interaction 

between concrete and tendon, the embedded model and the separated model. The traditional 

embedded model, where tendon is regarded to be fully bonded with concrete, provides 

convenience in finite element mesh but misses the consideration of tendon slip. The separated 

model, which can simulate the behavior of the interface of concrete and tendon through bond 

element, usually, however, needs tendon located at the boundary of concrete. When tendon 

layout is complicated, the preprocessing work would be inevitably troublesome. At present, a 

series of tendon models (e.g., Kang [3]; Van Zyl and Scordelis [4]; Van Greunen and 
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Scordelis [5]; Mari [6]; Roca and Mari [7]; Cruz et al. [8]; Wu et al. [9]) have been proposed 

for PC structures, but most of them are considered within the 2D space with concrete 

modeled by plane element or shell element. 

 In addition, the creep effect, as an important time-dependent property of concrete, 

also has a strong influence on the structure. The accurate consideration of the creep effect 

relies on several aspects, such as the calculation of the creep coefficient and the storage of 

concrete stress. Zienkiewiz et al. [10], on taking advantage of the characteristics of 

exponential function, provided an explicit solution of equal step for creep analysis. The 

solution was improved by Zhu [11], who provided an explicit solution as well as an implicit 

solution of variable step. Meanwhile, the aging difference of concrete is in need of attention 

since concrete creep has a strong sensitivity to time. 

 In this study, a spatial embedded slip model which incorporates the advantages of 

the traditional embedded and separated model is presented to analyze the time-relative 

coupling effects of creep and prestress upon PC bridges. The finite element equilibrium 

equation of the model is established within the displacement-based finite element framework 

to well consider the displacement modes and material constitutive relations of its components. 

Furthermore, the incremental equation for creep analysis is inserted into the equilibrium 

equation as well as considering the aging differences. A corresponding program is developed 

using fortran language and a modified Newton-Raphson iteration algorithm is adopted so that 

the stiffness and load matrix of the model can be automatically updated within the solution. 
 

Spatial embedded slip model 

 

The spatial embedded slip model is made up of three components: (1) a 20-node 3D solid 

element for simulation of concrete; (2) a 2-node truss element for simulation of tendon; and 

(3) a 4-node non-thickness bond element for simulation of the interface of the two. At the 

same time, three coordinate systems are adopted, such as oxyz for the global coordinate 

system, o’ξηζ for the local coordinate system of the concrete element, and o1tr1r2 for the local 

coordinate system shared by the tendon element and the bond element. It is appointed that the 

corner marks of cor1, cor2, and cor3 in the equations of this paper are meant to refer to oxyz, 

o’ξηζ, and o1tr1r2, respectively. Shown in Fig. 1 is the discrete form of the spatial embedded 

slip model, where 1~20 are the nodes of the concrete element, i and j are the nodes of the 

tendon element, m and n are the virtual nodes [12] set at the intersection points of these two. 

At the initial moment, m and n should coincide with i and j, respectively. It is regarded that 

tendon is fully bonded with concrete in radial directions. As shown in Fig. 1, the internal and 

the external surface of the bond element share common nodes of i and j as well as common 

virtual nodes of m and n with, respectively, the tendon element and the concrete element. 

 The vector of tendon slippage in the local coordinate system of o1tr1r2 is 

  
T'

cor3 cor3 1 2{ } { } { }A A

t r rs u u s s s    (1) 

where A and A’ respectively corresponds to the point on the external and internal surface of 

the bond element at local tangential coordinate t (-1≤t≤1); st=tangential tendon slippage; sr1 

and sr2=relative displacement of tendon and concrete in the direction of o1r1 and o1r2, 

respectively. 

 The displacements of point A and A’ in the global coordinate system of oxyz are 

 
cor1 s{ } [ ] { }A mnu N u  (2) 

 '

cor1 s s{ } [ ] { }Au N u  (3) 

where 
T{ } [ ]mn m m m n n n

x y z x y zu u u u u u u =vector of displacements of nodes m and n; 

T

s{ } [ ]i i i j j j

x y z x y zu u u u u u u =vector of nodal displacements of tendon; 



 s[ ] (1 )[ ] 2 (1 )[ ] 2N t I t I   =shape function matrix of tendon, with [I]=3×3 unit matrix. 

 Let 
1 1 1 20 20 20 T

c{ } =[ ... ]x y z x y zu u u u u u u =vector of nodal displacements of 

concrete, and c[ ]N =shape function matrix of concrete, there is 

 
c{ } [ ] { }mn

mnu N u  (4) 

where [ ]mnN =displacement interpolation matrix of nodes m and n. 

 Substituting Eq. 4 into Eq. 2 results in 

 
cor1 s c{ } [ ] [ ] { }A

mnu N N u  (5) 

 Fig. 2 shows the conversion between the local coordinate system of o1tr1r2 and the 

global coordinate system of oxyz. It is noted that φ=angle between axis o1t and plane xoy, 

θ=angle between axis o1t’ and ox, with axis o1t’ the projection of o1t on plane xoy, the 

displacements of any point in o1tr1r2 and oxyz satisfy 

 cor3 2 1 cor1{ } [ ] [ ] { }u T T u  (6) 

where 1[ ]T and 2[ ]T =conversion matrices expressed by θ and φ, respectively. 

 Combine Eq. 2, 5, and 6 to obtain the vector of slippage expressed by c{ }u
 
and s{ }u  

 '

2 1 cor3 cor3 2 1 s c s{ } [ ] [ ] ({ } { } ) [ ] [ ] [ ] ([ ] { } { } )A A

mns T T u u T T N N u u     (7) 
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Figure 1.    Discrete form of the spatial embedded slip model 

 

Material constitutive relation 

 

In this study, the material constitutive relations of concrete and tendon are considered to be 

linear elastic, satisfying 

 c c c c c c{ } [ ] { } [ ] [ ] { }D D B u    (8) 

 s s s s s s{ } [ ] { } [ ] [ ] { }D D B u    (9) 

where { } , { } , [ ]D , and [ ]B =matrices of stress, strain, elasticity, and strain 

transformation, with corner marks of c and s referring to concrete and tendon, respectively. 
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Figure 2.    Conversion between local and 

coordinate systems 
Figure 3.    Bond stress-slip curve 

  

As to the bond element, since tendon is assumed to be fully bonded with concrete in its radial 

directions, a large value which has the same order of magnitude with the elastic modulus of 

concrete is assigned to the radial stiffness in order to ensure that the radial relative 



deformation of concrete and tendon is well coordinated. For the tangential stiffness of the 

bond element, we choose the bond stress-slip relation proposed by Eligehausen et al. [13], 

which is shown in Fig. 3, the mathematical equations of the tangential bond stress and 

stiffness when tendon slippage is larger than zero are 
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 (10) 

where τt and kt=tangential bond stress and stiffness, respectively; in this paper, s0=0.025mm, 

s1=20s0, τ0=6.64MPa, τ1=0.2τ0. 

 Then the constitutive relation of the bond element is 

 b b b 2 1 s c s{ } [ ] { } [ ] [ ] [ ] [ ] ([ ] { } { } )mnf k s k T T N N u u    (11) 

where  
T

b 1 2{ } t r rf    =vector of force per unit area for the bond element, with σr1 

and σr2=orthogonal radial bond stresses; b 1

2

t

r

r

k

k

k

 
 


 
  

k =stiffness matrix of the bond 

element corresponding to the local coordinate system of o1tr1r2, with kr1 and kr2=orthogonal 

radial stiffness in the directions of o1r1 and o1r2, respectively. 

 

Equilibrium equation of the slip model 

 

With the solution found at step i, where the stress and force vectors of concrete, tendon and 

the bond element are denoted as c,{ } i , s,{ } i , and 
b,{ } if , respectively, equilibrating external 

force vectors 
c,{ } iP  and 

s,{ } iP
 
applied on the nodes of concrete and tendon, the incremental 

form of the virtual work principle can be used to obtain the solution at step i+Δi 

 
c s

b

T T

c c, c, c, c s s s, s, s, s

T T T

s b, b, b, b c, c, Δ s, s, Δ

([ ] δ{Δ } ) ({ } {Δ } ) ([ ] δ{Δ } ) ({ } {Δ } )

(δ{Δ } ) ({ } {Δ } ) (δ{Δ } ) { } (δ{Δ } ) { }

i i i i i i
V

i i i i i i i i i

B u dV A B u d

C s f f d u P u P





   

  

  

   

 



σ

(12) 

with Vc=concrete volume, Γs and Γb =length of tendon and bond element, respectively, As and 

Cs=area and perimeter of tendon element, and Δ represents the increments. 

 Substituting Eq. 8, 9, 11 into the three items on the left side of Eq. 12, respectively, 

there are 

 
T c T c

c,int c, cc, c, cc c,δ (δ{Δ } ) [ ] (δ{Δ } ) [ ] {Δ }i i i iW u R u K u   (13) 

 
T s T s

s,int s, ss, s, ss s,δ (δ{Δ } ) [ ] (δ{Δ } ) [ ] {Δ }i i i iW u R u K u   (14) 

 

T T T b

b,int c, bc, s, bs, c, cc, c,

T b T b T b

c, cs, s, s, sc, c, s, ss, s,

δ (δ{Δ } ) [ ] (δ{Δ } ) [ ] (δ{Δ } ) [ ] {Δ }

(δ{Δ } ) [ ] {Δ } (δ{Δ } ) [ ] {Δ } (δ{Δ } ) [ ] {Δ }

i i i i i i i

i i i i i i i i i

W u R u R u K u

u K u u K u u K u

  

  
(15) 

where 
c

c T

cc, c c, c[ ] [ ] { }i i
V

R B dV  ; 
s

s T

ss, s s s, s[ ] [ ] { }i iR A B d


   ;  

b

b T T T T

bc, s s 1 2 b, b[ ] [ ] [ ] [ ] [ ] { }i mn iR C N N T T f d


  ; 
b

b T T T

bs, s s 1 2 b, b[ ] [ ] [ ] [ ] { }i iR C N T T f d


   ; 

c

c T

cc c c c c[ ] [ ] [ ] [ ]
V

K B D B dV  ; 
s

s T

ss s s s s s[ ] [ ] [ ] [ ]K A B D B d


  ; 



b

b T T T T

cc, s s 1 2 b, 2 1 s b[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]i mn i mnK C N N T T k T T N N d


  ; 

b

b T T T T

cs, s s 1 2 b, 2 1 s b[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]i mn iK C N N T T k T T N d


   ; 

b

b T T T

sc, s s 1 2 b, 2 1 s b[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]i i mnK C N T T k T T N N d


   ; 

b

b T T T

ss, s s 1 2 b, 2 1 s b[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]i iK C N T T k T T N d


  . 

 Substitute Eq. 13, 14, and 15 into Eq. 12, and rewrite it to matrix form to get the 

basic finite element equilibrium equation of the slip model at step i. 

 

c b b c b
c, c, Δcc cc, cs, cc, bc,

b s b s b
s, s, Δsc, ss ss, ss, bs,

{Δ } { }[ ] [ ] [ ] [ ] [ ]

{Δ } { }[ ] [ ] [ ] [ ] +[ ]

i i ii i i i

i i ii i i i

u PK K K R R

u PK K K R R





       
       

       
 (16) 

 

Creep Effect 

 

In this study, the total strain of concrete at age t is considered to be the sum of the elastic 

strain and the creep strain 

 e cr

c c c( ) ( ) ( )t t t     (17) 

 Shown in Fig. 4 is the time-relative developing curve of the concrete stress, with 

creep considered from t0. Noting Δtn=tn-tn-1, Δσc,n=σc(tn)-σc(tn-1), Δσc,0=initial concrete stress, 

Ec=elastic modulus of concrete, there are 

 
0

c,0e c
c

c c

d1
( )

d

t

t
t d

E E

 
 




    (18) 

 
0

c,0cr c
c 0

c c

d( , )
( ) ( , )

d

t

t

t
t t t d

E E

  
  




    (19) 

where φ(t,τ)=creep coefficient; τ=age from the time when creep began. In the current Chinese 

bridge design code [14], the creep coefficient is defined as 

 c( , ) ( ) ( )t t         (20) 

with 

0.3

1
c

H 1

( )
( )

( )

t t
t

t t


 

 

 
   

  
 and 

18

H

0 0

150 1 1.2 250 1500
RH h

RH h


  
     
   

 

where φ(τ)=nominal creep coefficient; βc(t-τ)=development coefficient; βH=coefficient 

relevant to RH and h; RH=annual average relative humidity; h=2A/u=theoretical thickness of 

component; A=cross-sectional area of component; u=peripheral length of component in 

contact with atmosphere; t1=1d; RH0=100%; h0=100mm. 

 For more convenience in programing, βc(t-τ) can be further fitted as 

 
3

( )

c

1

( ) jq t

j

j

t c e


 




   (21) 

where the values of cj and qj (j=1,2,3) are listed in Tab. Shown in Fig. 4 are the fitting and 

theoretical curves of φ(t,τ) when RH=55% and h=100mm, in which a high accuracy of the 

fitting equation can be seen. 

 Combine Eq. 17, 18, 19, and 21 to obtain the creep strain increment within Δtn 

 
cr cr cr

c, c c 1 c,( ) ( )n n n n n nt t            (22) 

where 
3

,

1

( 1)j nq t

n j n

j

e 




  , 0.5

c

( , )n n
n

t t

E


  , 



1 10.5c, 1

, , 1 1 0.5

c

( )j n j nq t q tn

j n j n n je t c e
E


    

  


  , with 

c,0

,1 0

c

( )j jt c
E


 


 . 

 

Table 1.  Values of fitting coefficients for βc(t-τ) 

 
RH h/mm c1 q1(×10-5) c2 q2(×10-3) c3 q3(×10-2) 

[40%,70%] 

(RH=55%) 

100 0.8689 4.5373 -0.4053 -4.4105 -0.4525 -8.4025 

200 0.8346 5.7034 -0.4185 -4.4664 -0.4068 -8.7232 

300 0.8034 6.8497 -0.4146 -3.9733 -0.3788 -8.5285 

600 0.7332 9.2705 -0.3996 -3.6582 -0.3256 -8.6367 

≥833 0.6923 10.654 -0.3805 -3.5026 -0.3036 -8.2968 

[70%,99%] 

(RH=80%) 

100 0.8523 5.0902 -0.4095 -4.2246 -0.4318 -8.2912 

200 0.8049 6.7806 -0.4167 -3.9919 -0.3799 -8.6855 

300 0.7667 8.1135 -0.4096 -3.7972 -0.3487 -8.6872 

≥600 0.6923 10.654 -0.3805 -3.5026 -0.3063 -8.2968 
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Figure 3.  Developing curve of concrete stress Figure 4.  Fitting and theoretical curves of φ(t,τ) 

 

 A detailed deduction of Eq. 22 can be seen in Cheng Ma [15], where the finite 

element equilibrium equation for creep analysis of plane concrete within Δtn is given as 

 cr cr

cc, c, c, c,[ ] { } { } { }n n n nK u P P      (23) 

where 
c

cr T

cc, c c, c c[ ] [ ] [ ] [ ]n n
V

K B D B dV  =creep stiffness matrix of concrete; -1

c c[ ] [ ]A E D ;  

c

T

c, c c, c{ } [ ] { }n n
V

P B dV    
and 

c

cr T

c, c c, c{ } [ ] [ ] { }n n n
V

P B D dV   =incremental vectors of 

external and equivalent forces, respectively; c, c

c

1
[ ] [ ]

1
n

n

D D
E




; 

3

,

1

{ } ( 1){ }j nq t

n j n

j

e 




  ; 

1

1

0.5

1 0.5

, , 1 c, 1

c

( )
{ } { } [ ]{ }

j n

j n

q t

q t n j

j n j n n

t c e
e A

E


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





  

    , with 

0

,1 c,0

c

( )
{ } [ ]{ }

j

j

t c
A

E


   . 

 The stress of plane concrete satisfies 

 c, c, c c,{ } [ ] ([ ] { } { } )n n n nD B u      (24) 

 Substituting Eq. 24 into 12 and replacing step i by time step n, the finite element 

equilibrium matrix for creep analysis of the slip model at time step n can be obtained 
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Aging difference 

 



For segmental constructed bridges, the aging difference of each segment should be 

distinguished and considered as concrete creep has a strong sensitivity to time. In this study, 

the calculation of each construction stage is divided into two sub-stages of (a) and (b), in 

which the instant responses and the creep responses of the structure within the constructed 

stage are calculated, respectively. Shown in Fig. 5 is a two-segment cantilever beam which is 

denoted as S, with segment ○1  and ○2  respectively casted in construction stage 1 and 2. In 

construction stage 1, the instant responses and creep responses of segment ○1  are calculated 

in sub-stage 1(a) and 1(b), respectively, without consideration of aging difference. In 

construction stage 2, segment ○1  is treated as an “older” component while segment ○2  is 

treated as a “new” one. Therefore, in sub-stage 2(a), only the creep effect should be 

considered for segment ○1 , then, as time axis moves to sub-stage 2(b), the concrete in 

segment ○2  starts to creep, requiring that the creep effect must be considered both in segment 

○1  and segment ○2 . It is obvious to see that the aging difference of concrete in segment ○1  

and segment ○2  equals to the construction time of stage 1. The iterative diagram of the 

proposed model in considering the aging difference is summarized in Fig. 6. 
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Figure 5.  Calculation stages of system S 

Note: the segment where concrete creep is in 

need of consideration is filled with shadow 

Figure 6.  Iterative diagram of the solution 

 

Numerical test 

 

In this chapter, three different beams are considered. The first one (beam I), as seen in Fig. 7, 

is a plain concrete beam where the creep analysis is conducted. The second one (beam II), as 

seen in Fig. 8, is a beam chosen from the experiment of Mitchell et al. [16] and was used by 

Ayoub et al. [17] in his study: for concrete, Ec=3.45×104MPa, ρc=2300kg/m3; for tendon, 

Es=2.049×1011MPa, fs=1286MPa=tensioning stress, ds=15.7mm, As=146.4mm2, c=50mm. 

The third one (beam III), as seen in Fig. 11, is a five-segment cantilever beam of rectangular 

section, with two tendons in each segment. For concrete, Ec=3.45×104MPa, ρc=2500kg/m3; 

for tendon, Es=2.00×1011MPa, fs=100MPa, As=100mm2.  

 

Beam I 

The creep effect is considered in ten years from t=30d, with time axis divided into six 

phrases: Δt1=[31d,41d], Δt2=[41d,76d], Δt3=[76d,145d], Δt4=[145d,365d], Δt5=[365d,1155d], 

Δt6=[1155d,3650d]. For the fitting equation of creep coefficient, cj and qj are taken from the 



first line of data in Tab. 1. To a determinant plane concrete structure where external forces 

are applied at one time, the creep coefficient can be derived from the ratio of the creep 

displacement/strain to the initial elastic displacement/strain. From Tab. 2, it can be seen that 

the creep coefficient derived either by the calculated displacement or the calculated strain 

displays a good agreement with the theoretical creep coefficient within each time step, and 

concrete stress remains steady from beginning to the end, proving that the program has a high 

accuracy in simulating the creep effect.  
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Figure 7.  Dimension and load conditions of beam I (Unit: mm) 

 

Table 2.  Calculation results of beam I 

 

Step Age(d) 
Mid-span displacement(mm)  Stain(×10-2)  Stress(MPa) 

Theoretical value of  
T C T/E  T C T/E  T C 

Static 31 -14.3 0.0 0.00  -0.051 0.000 0.00  -17.7 0.0 0.00 

Step1 41 -25.3 -11.0 0.77  -0.091 -0.040 0.77  -17.7 0.0 0.80 

Step2 76 -34.9 -20.6 1.44  -0.126 -0.075 1.47  -17.7 0.0 1.48 

Step3 145 -38.9 -24.6 1.72  -0.141 -0.090 1.76  -17.7 0.0 1.76 

Step4 365 -45.4 -31.1 2.17  -0.164 -0.113 2.22  -17.7 0.0 2.22 

Step5 1155 -50.3 -36.0 2.52  -0.181 -0.130 2.55  -17.7 0.0 2.56 

Step6 3650 -54.7 -40.4 2.83  -0.198 -0.147 2.88  -17.7 0.0 2.88 

 

Beam II 

In this model, gradation loading proceeds in four steps. Load step 1: tension and anchorage of 

tendon; Load steps 2~4: concentrated force P is applied step by step as per 0→10kN, 

10→20kN, and 20→30kN at midspan. For the purpose of comparison, an ANSYS model is 

established with tendon and concrete respectively simulated by element link 8 and solid 95 in 

which full bonding is assumed to be existed between the two. 
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Figure 8.  Dimensions and tendon layout of beam II (Unit: mm) 
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Figure 9.  Developing curves of midspan 

displacements 

Figure 10.  Distribution of permanent stress and 

prestress loss along the beam after anchorage 

 



The load-displacement responses calculated by the proposed model, ANSYS model 

and Ayoub’s model are shown in Fig. 9. Obviously, the development trends of the four 

curves are consistent. The load-displacement response obtained by the proposed model draws 

close to that by ANSYS model, for the element form and the mesh layout of them are the 

same. Since the proposed model puts tendon slip into consideration, and ANSYS model 

assumes full bond existing between tendon and concrete, the overall structural stiffness 

calculated by the proposed model will be smaller than that by ANSYS, and therefore, the 

midspan displacement calculated by the proposed model will be large than that by ANSYS 

under the same loading level, which is also provided in Fig.9. Because of the differences in 

element form, mesh layout and load processing, the calculation result of Ayoub’s model is 

not that close to that of the proposed model although it considers tendon slip. The maximum 

discrepancy between Ayoub’s model and the proposed model reaches as high as 18% at the 

end of load step 1. Fig. 10 shows the distributions of permanent stress and prestress loss 

along the beam after anchorage. The prestress loss mounts to the maximum at the end of 

beam, reaching 105MPa, 8% of the tensioning stress, and attenuates towards midspan, 

arriving at a stable level of 46MPa. On the contrary, the permanent stress mounts to the 

maximum t midspan while slacks off at the end of beam, showing a transfer length, as what 

Ayoub stated in his study. 

 

Beam III 
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Figure 11.  Dimensions and tendon layout of beam III (Unit: mm) 

 

In the process of cantilever construction, the control of the elevation is of great importance to 

the final bridge line. As shown in Fig.11, although the dimensions of segment ○1 ~○5  are the 

same, their stiffness and load contributions to the overall structure are still different for the 

influence of concrete creep and aging differences. In Fig. 12 is shown the final construct line 

when segment ○5  is finished. In the figure, the final displacement of the beam when creep is 

considered is quite different from that when creep is not considered, indicating that the 

concrete creep has a significant impact on bridge line of the construction stage. Fig. 13 shows 

the tendon slippage along the beam. Obviously, the tendon slippage when creep is considered 

is much larger than that when it is not, explaining that the concrete creep aggravates the 

interaction between tendon and concrete, and thus further weakens the overall stiffness of the 

structure. 

 

 
 

 
 

Figure 12.  Final displacements of beam III Figure 13.  Tendon slippage along the beam 

 



Conclusions 
 

This study presents a spatial slip model for PC bridges, with concrete, tendon and interface of 

the two simulated by 20-node solid element, 2-node truss element, and 4-node non-thickness 

bond element, respectively. This model takes tendon slip into consideration with allowing 

tendon to go through concrete in any patterns, which makes an improvement on the 

traditional embedded and separated model. The finite element equilibrium equation of the 

model is deduced and a modified Newton-Raphson iteration algorithm is adopted within the 

solution of the equilibrium equations so that the stiffness and load matrices of the model can 

be updated easily. Though numerical studies of three different beams, the accuracy of the slip 

model is verified, where a distinguish difference between the responses whenever creep 

effect is considered is easy to see, showing that concrete creep as well as aging difference has 

a strong impact on the structure. 
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